138 research outputs found

    Robust online adaptive neural network control for the regulation of treadmill exercises

    Full text link
    The paper proposes a robust online adaptive neural network control scheme for an automated treadmill system. The proposed control scheme is based on Feedback-Error Learning Approach (FELA), by using which the plant Jacobian calculation problem is avoided. Modification of the learning algorithm is proposed to solve the overtraining issue, guaranteeing to system stability and system convergence. As an adaptive neural network controller can adapt itself to deal with system uncertainties and external disturbances, this scheme is very suitable for treadmill exercise regulation when the model of the exerciser is unknown or inaccurate. In this study, exercise intensity (measured by heart rate) is regulated by simultaneously manipulating both treadmill speed and gradient in order to achieve fast tracking for which a single input multi output (SIMO) adaptive neural network controller has been designed. Real-time experiment result confirms that robust performance for nonlinear multivariable system under model uncertainties and unknown external disturbances can indeed be achieved. © 2011 IEEE

    Patient adherence to scheduled vital sign measurements during home telemonitoring: Analysis of the intervention arm in a before and after trial

    Full text link
    © Branko Celler, Ahmadreza Argha, Marlien Varnfield, Rajiv Jayasena. Background: In a home telemonitoring trial, patient adherence with scheduled vital signs measurements is an important aspect that has not been thoroughly studied and for which data in the literature are limited. Levels of adherence have been reported as varying from approximately 40% to 90%, and in most cases, the adherence rate usually dropped off steadily over time. This drop is more evident in the first few weeks or months after the start. Higher adherence rates have been reported for simple types of monitoring and for shorter periods of intervention. If patients do not follow the intended procedure, poorer results than expected may be achieved. Hence, analyzing factors that can influence patient adherence is of great importance. Objective: The goal of the research was to present findings on patient adherence with scheduled vital signs measurements in the recently completed Commonwealth Scientific and Industrial Research Organisation (CSIRO) national trial of home telemonitoring of patients (mean age 70.5 years, SD 9.3 years) with chronic conditions (chronic obstructive pulmonary disease, coronary artery disease, hypertensive diseases, congestive heart failure, diabetes, or asthma) carried out at 5 locations along the east coast of Australia. We investigated the ability of chronically ill patients to carry out a daily schedule of vital signs measurements as part of a chronic disease management care plan over periods exceeding 6 months (302 days, SD 135 days) and explored different levels of adherence for different measurements as a function of age, gender, and supervisory models. Methods: In this study, 113 patients forming the test arm of a Before and After Control Intervention (BACI) home telemonitoring trial were analyzed. Patients were required to monitor on a daily basis a range of vital signs determined by their chronic condition and comorbidities. Vital signs included noninvasive blood pressure, pulse oximetry, spirometry, electrocardiogram (ECG), blood glucose level, body temperature, and body weight. Adherence was calculated as the number of days during which at least 1 measurement was taken over all days where measurements were scheduled. Different levels of adherence for different measurements, as a function of age, gender, and supervisory models, were analyzed using linear regression and analysis of covariance for a period of 1 year after the intervention. Results: Patients were monitored on average for 302 (SD 135) days, although some continued beyond 12 months. The overall adherence rate for all measurements was 64.1% (range 59.4% to 68.8%). The adherence rates of patients monitored in hospital settings relative to those monitored in community settings were significantly higher for spirometry (69.3%, range 60.4% to 78.2%, versus 41.0%, range 33.1% to 49.0%, P<.001), body weight (64.5%, range 55.7% to 73.2%, versus 40.5%, range 32.3% to 48.7%, P<.001), and body temperature (66.8%, range 59.7% to 73.9%, versus 55.2%, range 48.4% to 61.9%, P=.03). Adherence with blood glucose measurements (58.1%, range 46.7% to 69.5%, versus 50.2%, range 42.8% to 57.6%, P=.24) was not significantly different overall. Adherence rates for blood pressure (68.5%, range 62.7% to 74.2%, versus 59.7%, range 52.1% to 67.3%, P=.04), ECG (65.6%, range 59.7% to 71.5%, versus 56.5%, range 48.7% to 64.4%, P=.047), and pulse oximetry (67.0%, range 61.4% to 72.7%, versus 56.4%, range 48.6% to 64.1%, P=.02) were significantly higher in males relative to female subjects. No statistical differences were observed between rates of adherence for the younger patient group (70 years and younger) and older patient group (older than 70 years). Conclusions: Patients with chronic conditions enrolled in the home telemonitoring trial were able to record their vital signs at home at least once every 2 days over prolonged periods of time. Male patients maintained a higher adherence than female patients over time, and patients supervised by hospital-based care coordinators reported higher levels of adherence with their measurement schedule relative to patients supervised in community settings. This was most noticeable for spirometry

    A framework for optimal actuator/sensor selection in a control system

    Full text link
    © 2017, © 2017 Informa UK Limited, trading as Taylor & Francis Group. When dealing with large-scale systems, manual selection of a subset of components (sensors/actuators), or equivalently identification of a favourable structure for the controller, that guarantees a certain closed-loop performance, is not very feasible. This paper is dedicated to the problem of concurrent optimal selection of actuators/sensors which can equivalently be considered as the structure identification for the controller. In the context of a multi-channel H 2 dynamic output feedback controller synthesis, we formulate and analyse a framework in which we incorporate two extra terms for penalising the number of actuators and sensors into the variational formulations of controller synthesis problems in order to induce a favourable controller structure. We then develop an explicit scheme as well as an iterative process for the purpose of dealing with the multi-objective problem of controller structure and control law co-design. It is also stressed that the immediate application of the proposed approach lies within the fault accommodation stage of a fault tolerant control scheme. By two numerical examples, we demonstrate the remarkable performance of the proposed approach

    Modelling and regulating of cardio-respiratory response for the enhancement of interval training

    Full text link
    Background: The interval training method has been a well known exercise protocol which helps strengthen and improve one's cardiovascular fitness.Purpose: To develop an effective training protocol to improve cardiovascular fitness based on modelling and analysis of Heart Rate (HR) and Oxygen Uptake (VO2) dynamics.Methods: In order to model the cardiorespiratory response to the onset and offset exercises, the (K4b2, Cosmed) gas analyzer was used to monitor and record the heart rate and oxygen uptake for ten healthy male subjects. An interval training protocol was developed for young health users and was simulated using a proposed RC switching model which was presented to accommodate the variations of the cardiorespiratory dynamics to running exercises. A hybrid system model was presented to describe the adaptation process and a multi-loop PI control scheme was designed for the tuning of interval training regime.Results: By observing the original data for each subject, we can clearly identify that all subjects have similar HR and VO2 profiles. The proposed model is capable to simulate the exercise responses during onset and offset exercises; it ensures the continuity of the outputs within the interval training protocol. Under some mild assumptions, a hybrid system model can describe the adaption process and accordingly a multi-loop PI controller can be designed for the tuning of interval training protocol. The self-adaption feature of the proposed controller gives the exerciser the opportunity to reach his desired setpoints after a certain number of training sessions.Conclusions: The established interval training protocol targets a range of 70-80% of HRmax which is mainly a training zone for the purpose of cardiovascular system development and improvement. Furthermore, the proposed multi-loop feedback controller has the potential to tune the interval training protocol according to the feedback from an individual exerciser. © 2014 Haddad et al.; licensee BioMed Central Ltd

    Cardiovascular fitness strengthening using portable device

    Full text link
    © 2016 IEEE. The paper describes a reliable and valid Portable Exercise Monitoring sysetm developed using TI eZ430-Chronos watch, which can control the exercise intensity through audio stimulation in order to increase the Cardiovascular fitness strengthening

    Effect of charge distribution on the translocation of an inhomogeneously charged polymer through a nanopore

    Full text link
    We investigate the voltage-driven translocation of an inhomogeneously charged polymer through a nanopore by utilizing discrete and continuous stochastic models. As a simplified illustration of the effect of charge distribution on translocation, we consider the translocation of a polymer with a single charged site in the presence and absence of interactions between the charge and the pore. We find that the position of the charge that minimizes the translocation time in the absence of pore--polymer interactions is determined by the entropic cost of translocation, with the optimum charge position being at the midpoint of the chain for a rodlike polymer and close to the leading chain end for an ideal chain. The presence of attractive or repulsive pore--charge interactions yields a shift in the optimum charge position towards the trailing end and the leading end of the chain, respectively. Moreover, our results show that strong attractive or repulsive interactions between the charge and the pore lengthen the translocation time relative to translocation through an inert pore. We generalize our results to accommodate the presence of multiple charged sites on the polymer. Our results provide insight into the effect of charge inhomogeneity on protein translocation through biological membranes.Comment: Submitted to Journal of Chemical Physic

    GP-support by means of AGnES-practice assistants and the use of telecare devices in a sparsely populated region in Northern Germany – proof of concept

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many rural regions in Germany, the proportion of the elderly population increases rapidly. Simultaneously, about one-third of the presently active GPs will retire until 2010. Often it is difficult to find successors for vacant GP-practices. These regions require innovative concepts to avoid the imminent shortage in primary health care.</p> <p>The AGnES-concept comprises the delegation of GP-home visits to qualified AGnES-practice assistants (AGnES: GP-supporting, community-based, e-health-assisted, systemic intervention). Main objectives were the assessment of the acceptance of the AGnES-concept by the participating GPs, patients, and AGnES-practice assistants, the kind of delegated tasks, and the feasibility of home telecare in a GP-practice.</p> <p>Methods</p> <p>In this paper, we report first results of the implementation of this concept in regular GP-practices, conducted November 2005 – March 2007 on the Island of Rügen, Mecklenburg-Western Pomerania, Germany. This study was meant as a proof of concept.</p> <p>The GP delegated routine home-visits to qualified practice employees (here: registered nurses). Eligible patients were provided with telecare-devices to monitor disease-related physiological values.</p> <p>All delegated tasks, modules conducted and questionnaire responses were documented. The participating patients were asked for their acceptance based on standardized questionnaires. The GPs and AGnES-practice assistants were asked for their judgement about different project components, the quality of health care provision and the competences of the AGnES-practice assistants.</p> <p>Results</p> <p>550 home visits were conducted. 105 patients, two GPs and three AGnES-practice assistants (all registered nurses) participated in the project. 48 patients used telecare-devices to monitor health parameters. 87.4% of the patients accepted AGnES-care as comparable to common GP-care. In the course of the project, the GPs delegated an increasing number of both monitoring and interventional tasks to the AGnES-practice assistants. The GPs agreed that delegating tasks to a qualified practice assistant relieves them in their daily work.</p> <p>Conclusion</p> <p>A part of the GPs home visits can be delegated to AGnES-practice assistants to support GPs in regions with an imminent or already existing undersupply in primary care. The project triggered discussions among the institutions involved in the German healthcare system and supported a reconciliation of the respective competences of physicians and other medical professions.</p

    Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans

    Get PDF
    We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent &lt;5 μSv). We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. The reconstructed attenuation coefficient of water at 140 keV was .150 ± .003/cm in the uniform region of the ACR phantom, .151 ± .003/cm and .151 ± .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 ± 6.5 before and 87.9 ± 3.3 after AC (average ± standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC

    Application of biomedical informatics to chronic pediatric diseases: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic diseases affect millions of children worldwide leading to substantial disease burden to the children and their families as well as escalating health care costs. The increasing trend in the prevalence of complex pediatric chronic diseases requires innovative and optimal delivery of care. Biomedical informatics applications play an important role in improving health outcomes while being cost-effective. However, their utility in pediatric chronic diseases has not been studied in a comprehensive and systematic way. The objective of this study was to conduct a systematic review of the effects of biomedical informatics applications in pediatric chronic diseases.</p> <p>Methods</p> <p>A comprehensive literature search was conducted using MEDLINE, the Cochrane Library and EMBASE databases from inception of each database to September 2008. We included studies of any methodological type and any language that applied biomedical informatics to chronic conditions in children and adolescents 18 years of age or younger. Two independent reviewers carried out study selection and data extraction. Quality assessment was performed using a study design evaluation instrument to appraise the strength of the studies and their methodological adequacy. Because of heterogeneity in the conditions and outcomes we studied, a formal meta-analysis was not performed.</p> <p>Results</p> <p>Based on our search strategy, 655 titles and abstracts were reviewed. From this set we identified 27 relevant articles that met our inclusion criteria. The results from these studies indicated that biomedical informatics applications have favourable clinical and patient outcomes including, but not limited to, reduced number of emergency room visits, improved knowledge on disease management, and enhanced satisfaction. Seventy percent of reviewed papers were published after year 2000, 89% of users were patients and 11% were either providers or caregivers. The majority (96%) of the selected studies reported improved outcomes.</p> <p>Conclusion</p> <p>Published studies suggested positive impacts of informatics predominantly in pediatric asthma. As electronic tools become more widely adopted, there will be opportunities to improve patient care in a wide range of chronic illnesses through informatics solutions.</p

    The Bactofilin Cytoskeleton Protein BacM of Myxococcus xanthus Forms an Extended β-Sheet Structure Likely Mediated by Hydrophobic Interactions

    Get PDF
    Bactofilins are novel cytoskeleton proteins that are widespread in Gram-negative bacteria. Myxococcus xanthus, an important predatory soil bacterium, possesses four bactofilins of which one, BacM (Mxan_7475) plays an important role in cell shape maintenance. Electron and fluorescence light microscopy, as well as studies using over-expressed, purified BacM, indicate that this protein polymerizes in vivo and in vitro into ~3 nm wide filaments that further associate into higher ordered fibers of about 10 nm. Here we use a multipronged approach combining secondary structure determination, molecular modeling, biochemistry, and genetics to identify and characterize critical molecular elements that enable BacM to polymerize. Our results indicate that the bactofilin-determining domain DUF583 folds into an extended β-sheet structure, and we hypothesize a left-handed β-helix with polymerization into 3 nm filaments primarily via patches of hydrophobic amino acid residues. These patches form the interface allowing head-to-tail polymerization during filament formation. Biochemical analyses of these processes show that folding and polymerization occur across a wide variety of conditions and even in the presence of chaotropic agents such as one molar urea. Together, these data suggest that bactofilins are comprised of a structure unique to cytoskeleton proteins, which enables robust polymerization
    corecore